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Abstract

This paper describes the synthesis of narrow-bandpass waveguide filters having

flat group delay and optimum amplitude characteristics.

The design utilizes

orthogonal-mode square waveguide cavities which lead to compact and lightweight

filters.
Introduction

The design of narrow-bandpass waveguide
filters having flat in-band group delay and
a monotonic amplitude response has been de-
scribed previously.lr2 The filters to be de-
scribed in this paper also have flat in-band
group delay, but exhibit the more optimum
elliptic-type amplitude response. These
transfer functions are realizable in the
orthogonal-mode square waveguide cavity geom-
etry shown in Fig, 1, Such a structure leads
to compact and lightweight filters.

Theory

The synthesis of a multicoupled cavity
network from a low-pass transfer function of
the form

t(s) = N(s)/D(s)

where D(s) Hurwitz polynomial of order n

N(s)

[t(3n) |2

polynomial of order <n =~ 2

l, =0 < XA < ®

A

has been described previously in References 3
and 4. The method used to reduce to zero
some of the general matrix elements to arrive
at the general orthogonal, coupled, square
waveguide cavity structure of Fig. 1 has also
been described.

Experiment

To illustrate the realization of these
near-optimum filter transfer functions, a
12th-order low-pass function was chosen.S5
This transfer function has been realized by
the filter shown in Fig. 2, which has a cen-
ter frequency of 4 GHz and a 40-MHz band-
width. The experimental results for the

6-waveguide-cavity filter are compared with
the theoretical response in Figs. 3 and 4.

Conclusions

The realization of near-optimum, non-
minimum phase functions in waveguide repre-
sents a significant improvement in filter
characteristics over those obtained previ-
ously. Further, the orthogonal-mode form
leads to very compact and lightweight
filters.
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FIG. 2. EXPERIMENTAL FILTER

FIG. 1. ORTHOGONAL-MODE FILTER STRUCTURE

0
10
THEORETICAL
Q=6000
—-=——= EXPERIMENTAL

20
a
:
8
2 30
<}
&
w
3
z
=
2 40
g
<
4
-

50

) J

70 ] ] l | ] 1 ] ] |

-50 ~ 40 -30 -20 -10 0 10 20 30 40 50

Af (MHz)

FIG. 3. TRANSMISSION AND RETURN LOSS
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FIG. 4. IN-BAND RESPONSE AND TIME DELAY

212

TIME DELAY ({ns)



